Reducts and Thomas' Conjecture The University of Leeds Lovkush Agarwal

Preliminaries

Definition. Let \mathcal{M} be a structure in a language L. A relation P is definable if $\exists \phi(\bar{x}) \in L$ s.t. $P = \{ \bar{a} \in M : \mathcal{M} \models \phi(\bar{a}) \}.$

Definition. Let \mathcal{M} be a structure. A structure $\mathcal N$ is a reduct of $\mathcal M$ if ${\cal N}$ has the same domain as ${\cal M}$ and all definable relations in $\mathcal N$ are definable in \mathcal{M} .

Intuition. \mathcal{N} is a reduct of \mathcal{M} if \mathcal{N} is a less detailed version of \mathcal{M} , or, if ${\cal N}$ contains less information than ${\cal M}$.

General Question. Given a structure \mathcal{M} , what are its reducts?

Remark. If two reducts $\mathcal{N}_1, \mathcal{N}_2$ of \mathcal{M} are reducts of each other (i.e. inter-definable), they are considered to be the same reduct of \mathcal{M} . Intuitively they contain the same information.

Fact. The reducts of a structure \mathcal{M} form a lattice. For example, the join of two reducts \mathcal{N}_1 and \mathcal{N}_2 is the structure whose relations are those definable in both \mathcal{N}_1 and \mathcal{N}_2 . Intuitively, the join contains the information common to both structures.

Examples

$$<_{\scriptscriptstyle \sf w}\!(a,\!b;x,\!y):=$$

$$egin{aligned} \mathsf{cyc}(x,\!y,\!z) &:= x & \ & ee y & \ & ee z & ee & \ & ee z & ee & \ & ee & ee$$

The following definable relations each $a < b \leftrightarrow x < y$ $\langle y \langle z \rangle$ $\langle z \langle x \rangle$ < x < y. $\leftrightarrow \operatorname{cyc}(x,\!y,\!z)$ **Theorem.** (Cameron, [1]) The

determine a reduct of $(\mathbb{Q}, <)$: $\mathsf{cyc}_{\mathsf{w}}(a,\!b,\!c;x,\!y,\!z) := \mathsf{cyc}(a,\!b,\!c)$ (The 'w' abbreviates 'weakened') reducts of $(\mathbb{Q}, <)$ are $(\mathbb{Q}, <)$, $(\mathbb{Q}, <_{w}), (\mathbb{Q}, \operatorname{cyc}), (\mathbb{Q}, \operatorname{cyc}_{w})$ and $(\mathbb{Q},=).$

Similar theorems have been proved for other structures, for example:

 $-(\mathbb{Q}, <, 0)$ has 116 reducts [2] -The random graph has 5 reducts [3] -The random k-hypergraph has $2^k + 1$ reducts, for $k \ge 2$ [4]

Thomas' Conjecture

Based on these results, Thomas made a conjecture in his 1996 paper:

Conjecture. If \mathcal{M} is a countable \aleph_0 -categorical structure with quantifier elimination in a finite relational language, then \mathcal{M} has finitely many reducts.

Correspondence with closed groups

There is a central correspondence between reducts and closed subgroups of $\mathsf{Sym}(M)$ - any proof of Thomas' conjecture will undoubtedly use it.

(The topology on $\mathsf{Sym}(M)$ is the subspace topology of the product topology on M^{M} .)

Fact. For any reduct \mathcal{N} of \mathcal{M} , $Aut(\mathcal{N})$ is a closed subgroup of Sym(M) containing $Aut(\mathcal{M})$.

Fact. If \mathcal{M} is \aleph_0 -categorical, then $\mathcal{N} \mapsto \operatorname{Aut}(\mathcal{N})$ is a lattice isomorphism from the reducts of \mathcal{M} to the closed subgroups of Sym(M)containing $Aut(\mathcal{M})$.

Notation. For $F \subseteq \text{Sym}(M)$, let $\langle F \rangle$ be the smallest closed group containing F.

The correspondence for $(\mathbb{Q}, <)$

Let $\leftrightarrow: \mathbb{Q} \to \mathbb{Q}$ be $q \mapsto -q$. Let $\bigcirc: \mathbb{Q} \to \mathbb{Q}$ map (π, ∞) onto $(-\infty,\pi)$, and, $(-\infty,\pi)$ onto (π,∞) order preservingly. Then:

 $(\mathbb{Q}, <) \mapsto \operatorname{Aut}(\mathbb{Q})$ $(\mathbb{Q}, <_{\mathsf{w}}) \mapsto \langle \mathsf{Aut}(\mathbb{Q}) \cup \{\leftrightarrow\} \rangle$ $(\mathbb{Q}, \operatorname{cyc}) \mapsto \langle \operatorname{Aut}(\mathbb{Q}) \cup \{ \circlearrowleft \} \rangle$ $(\mathbb{Q}, \mathsf{cyc}_{\mathsf{w}}) \mapsto \langle \mathsf{Aut}(\mathbb{Q}) \cup \{\leftrightarrow, \circlearrowleft\} \rangle$ $(\mathbb{Q},=)\mapsto \mathsf{Sym}(\mathbb{Q})$

Lovkush Agarwal Reducts and Thomas' Conjecture

The Generic Directed Graph

My focus is in determining the reducts of the generic digraph. This structure can be defined randomly: Let the domain be \mathbb{N} . For i < j, select one of three options with equal probability: edge from i to j, or, edge from j to i, or, no edge at all.

am using a strategy developed by Bodirsky, Pinsker and Pongrácz: By adding a linear order, Ramsey theory provides, to each reduct, an associated 'nice' function. It suffices to study these 'nice' functions, which boils down to finite combinatorics.

References

[1] P.J. Cameron, *Transitivity of* permutation groups on unordered sets, Mathematische Zeitschrift, 148 (1976), 127-139.

[2] M. Junker and M. Ziegler, *The* 116 reducts of $(\mathbb{Q}, \langle 0 \rangle)$, Journal of Symbolic Logic, **73**, (2008), 861-884.

[3] S. Thomas, *Reducts of the* random graph, Journal of Symbolic Logic, **56** (1991), 176-181.

[4] S. Thomas, *Reducts of random* hypergraphs, Annals of Pure and Applied Logic, **80** (1996), 165-193.